3 Trigonometric Functions

3.1 Definitions, graphs & properties of trigonometric functions (revisited)

Sketch the graphs of the following functions:

$$y = \sin x$$
; $y = \cos x$

$$y = \sin^{-1} x; \ y = \cos^{-1} x$$

$$y = \tan x; \ y = \cot x$$

$$y = \tan^{-1} x; \ y = \cot^{-1} x$$

$$y = \sec x; \ y = \csc x$$

$$y = \sec^{-1} x; \ y = \csc^{-1} x$$

Exercise 16.

- 1. State the domain and range for each of the above functions.
- 2. Which of the above functions are bounded? For these bounded functions, find their extrema (if any).
- 3. Which of the above functions are continuous?
- 4. Investigate the symmetry property for each of the above functions.
- 5. Which of the above functions are periodical? For these periodic functions, determine their (least positive) period.
- 6. State the complementary relations among these function.

3.2 Trigonometric identities

You may summarize the relations among the trigonometric functions using the following diagram:

- Products:
- Reciprocals:
- Sum of squares:

Exercise 17.

- 1. Evaluate each of the following expressions.
 - (a) $\tan \phi + \sec \phi$, given that $\sin \phi = -0.6$, and that ϕ is a fourth-quadrant angle
 - (b) $\sin \xi + \cot \xi$, given that $\cos \xi = -\frac{12}{13}$, and that ξ is a third-quadrant angle
 - (c) $\sin^2 \alpha 3\sin \alpha \cos \alpha 2\cos^2 \alpha$, given that $\cot \alpha = -\frac{8}{15}$
 - (d) $\frac{\sec \mu + \csc \mu}{\sec \mu \csc \mu}$, given that $\tan \mu = -4$
- 2. Prove the following identities.
 - (a) $\frac{1-2\sin x \cos x}{\cos^2 x \sin^2 x} = \frac{1-\tan x}{1+\tan x}$
 - (b) $\tan^2 \alpha \sec^2 \beta + \sec^2 \alpha \tan^2 \beta \tan^2 \alpha \tan^2 \beta = \sec^2 \alpha \sec^2 \beta 1$
- 3. Solve the following equations, giving all roots between 0° and 360° inclusive, correct to 1 decimal place.
 - (a) $3 \tan x = 10 \csc x$
 - (b) $\sec 2x + \cos 2x = 4$
 - (c) $2\tan^2 2x = 3\sec 2x$
 - (d) $(\tan x 2 \cot x)(\tan x + 3 \cot x) = 2$

3.3 Sum and difference formulae

- $\sin(A \pm B) = \sin A \cos B \pm \cos A \sin B$
- $\cos(A \pm B) = \cos A \cos B \mp \sin A \sin B$
- $\tan(A \pm B) = \frac{\tan A \pm \tan B}{1 \mp \tan A \tan B}$

Derive the formula of sin(A + B) for both A and B being acute angles, and think about why it is true in general.

Hence deduce the rest of the formulae by using this one.

Exercise 18.

- 1. Evaluate the exact values of $\sin \frac{\pi}{12}$.
- 2. Express $\tan\left(\frac{5}{6}\pi x\right)$ in terms of $\tan x$.
- 3. Given that $\sin A = \frac{4}{5}$ and $\cos B = -\frac{5}{13}$, where A and B are both obtuse angles, find the exact values of:

$$\sin(A+B)$$
, $\cos(A-B)$, $\tan(B-A)$

- 4. Solve the equation $\sin\left(x+\frac{1}{6}\pi\right)\sin\left(x-\frac{1}{6}\pi\right)=\frac{1}{4}$, in the interval $-2\pi\leq x\leq 2\pi$.
- 5. Solve the equation $\sin\left(x+\frac{1}{4}\pi\right)=2\cos\left(x+\frac{1}{3}\pi\right)$, in the interval $-2\pi\leq x\leq 2\pi$, correct your answers to 2 decimal places.
- 6. Given that $\cos \alpha + \cos \beta = \frac{1}{2}$, and $\sin \alpha + \sin \beta = \frac{1}{3}$, find the value of $\cos(\alpha \beta)$.
- 7. Given that $\sin \phi + \cos \phi = -\frac{1}{5}$, find all possible values of $\tan \phi$.
- 8. Simplify the expression $\sin x + \sin \left(x + \frac{2}{3}\pi\right) + \cos \left(x + \frac{5}{6}\pi\right)$.
- 9. Prove the identity $\frac{\sin(2\xi + \eta)}{\sin \xi} 2\cos(\xi + \eta) = \frac{\sin \eta}{\sin \xi}$.

3.4 Double angle formulae

Double angle formulae follow immediately from the respective sum formulae, by setting A = B:

- $\sin 2A = 2\sin A\cos A$
- $\cos 2A = \cos^2 A \sin^2 A = 2\cos^2 A 1 = 1 2\sin^2 A$
- $\bullet \ \tan 2A = \frac{2\tan A}{1 \tan^2 A}$

Exercise 19.

- 1. If $\cos 2\theta = -\frac{7}{18}$, find the possible values of $\cos \theta$ and $\sin \theta$.
- 2. If $\tan 2\alpha = 1$, find the possible values of $\tan \alpha$. Hence state the exact value of $\tan \frac{1}{8}\pi$.
- 3. Solve the equation $2\cos 2x + 1 + \sin x = 0$ in the interval $0 \le x \le 2\pi$.
- 4. Solve the equation $\tan 2x + 5 \tan x = 0$.
- 5. Deduce that $\sin^2 \frac{1}{2}A = \frac{1}{2}(1-\cos A)$, hence express $\sin \frac{1}{2}A$ in terms of $\cos A$. Derive a similar result for $\cos \frac{1}{2}A$.
- 6. Derive the tripe angle formulae of $\sin 3A$, $\cos 3A$ and $\tan 3A$.
- 7. Prove the following identities.

(a)
$$\tan \frac{1}{2}A = \frac{\sin A}{1 + \cos A} = \frac{1 - \cos A}{\sin A} = \frac{\tan A}{1 + \sec A}$$

(b)
$$\tan \frac{x+y}{2} = \frac{\sin x + \sin y}{\cos x + \cos y}$$

(c)
$$\tan\left(\frac{1}{2}\theta + \frac{1}{4}\pi\right) = \sec\theta + \tan\theta$$

(d)
$$\sqrt{\frac{1-\sin\theta}{1+\sin\theta}} = \left| \frac{1-\tan\frac{1}{2}\theta}{1+\tan\frac{1}{2}\theta} \right|$$

(e)
$$\cos 4\alpha + 4\cos 2\alpha + 3 = 8\cos^4 \alpha$$

(f)
$$\frac{1 + \sin 2x}{2\cos^2 x + \sin 2x} = \frac{1}{2}(\tan x + 1)$$

(g) (†)
$$\cos^2 \phi + \cos^2 \left(\frac{2}{3}\pi - \phi\right) + \cos^2 \left(\frac{2}{3}\pi + \phi\right) = \frac{3}{2}$$

- 8. Given two functions $f(x) = \sin^{-1}(\sin x)$, and $g(x) = \cos(2\cos^{-1}x)$, sketch their graphs. Hence show that f(x) is an odd function, while g(x) is an even function.
- 9. Simplify the following expressions.

(a)
$$\frac{1 + \sin 2\theta - \cos 2\theta}{1 + \sin 2\theta + \cos 2\theta}$$

(a)
$$\frac{1+\sin 2\theta - \cos 2\theta}{1+\sin 2\theta + \cos 2\theta}$$
(b)
$$\frac{1+\sin 2\alpha}{1+\sin 2\alpha + \cos 2\alpha} - \frac{1}{2}\tan \alpha$$

(c)
$$(\dagger)$$
 $\tan 2\alpha \cdot \tan \left(\frac{1}{6}\pi - \alpha\right) + \tan 2\alpha \cdot \tan \left(\frac{1}{3}\pi - \alpha\right) + \tan \left(\frac{1}{6}\pi - \alpha\right) \cdot \tan \left(\frac{1}{3}\pi - \alpha\right)$

- 10. α and β are two acute angles such that $\tan \alpha$ and $\tan \beta$ are the two roots of the equation $6x^2 5x + 1 = 0$, find the exact values of $\tan(\alpha + \beta)$ and $\tan \frac{\alpha + \beta}{2}$.
- 11. Given that α is obtuse and β is acute, and that $\sin \alpha = \frac{4}{5}$, $\sin \beta = \frac{12}{13}$, find the value of $\cos \frac{\alpha \beta}{2}$.

3.5 The sinusoidal form

If a and b are positive,

• $a \sin x \pm b \cos x$ can be written in the form

• $a\cos x \pm b\sin x$ can be written in the form

where $R = \underline{\hspace{1cm}}$, and $\alpha = \underline{\hspace{1cm}}$.

Exercise 20.

1. Express each of the following expressions in the given form(s), where R is positive, and α an acute angle.

(a)
$$7\sin x + 2\cos x$$
; $R\sin(x+\alpha)$; $R\cos(x-\beta)$

(b)
$$4\cos x - 5\sin x$$
; $R\cos(x + \alpha)$

(c)
$$3\sin x - 5\cos x$$
; $R\sin(x - \alpha)$

2. Solve the equation $4\cos\frac{1}{2}x + 5\sin\frac{1}{2}x + 2 = 0$ for values of x between 0 and 2π .

3. Simplify
$$\sqrt{3}\sin\left(\frac{1}{6}\pi - \alpha\right) - \cos\left(\frac{1}{6}\pi - \alpha\right)$$
.

4. State the range of the function
$$y = \frac{2}{8\cos 3x - 15\sin 3x + 20}$$
.

5. Find the maximum and minimum values of the function $y = 12\sin 2x + 5\cos 2x - 4$, stating the value(s) of x with least modulus where the maximum or minimum value is attained.

6. State the period of the function $y = 3\sin 3x - 5\cos 3x + 4$, and sketch its graph for at least two periods.

7. Determine the period of the function $f(x) = \cos^2 x + 2\sqrt{3}\sin x \cos x - \sin^2 x$.

3.6 (†) Other trigonometric formulae [EXTRA]

ullet The **sum-product** formulae:

$$\sin x \pm \sin y \equiv 2 \sin \frac{x \pm y}{2} \cos \frac{x \mp y}{2}$$
$$\cos x + \cos y \equiv 2 \cos \frac{x + y}{2} \cos \frac{x - y}{2}$$
$$\cos x - \cos y \equiv -2 \sin \frac{x + y}{2} \sin \frac{x - y}{2}$$

• The **product-sum** formulae:

$$\sin x \sin y \equiv -\frac{\cos(x+y) - \cos(x-y)}{2}$$
$$\sin x \cos y \equiv \frac{\sin(x+y) + \sin(x-y)}{2}$$
$$\cos x \cos y \equiv \frac{\cos(x+y) + \cos(x-y)}{2}$$

• The **tangent half-angle** formulae:

$$\sin x \equiv \frac{2\tan\frac{x}{2}}{1+\tan^2\frac{x}{2}}$$

$$\cos x \equiv \frac{1-\tan^2\frac{x}{2}}{1+\tan^2\frac{x}{2}}$$

$$\tan x \equiv \frac{2\tan\frac{x}{2}}{1-\tan^2\frac{x}{2}}$$

Exercise 21.

(†) Enjoy the following challenges.

1. The two roots of the quadratic equation $ax^2 + (2a - 3)x + (a - 2) = 0$ are $\tan \alpha$ and $\tan \beta$, respectively.

(a) Find the value of $\tan(\alpha + \beta)$ if $a = \frac{1}{2}$.

(b) Find the set of values of $tan(\alpha + \beta)$ as a varies $(a \neq 0)$.

2. For a certain value of k, $f(\theta, \alpha) = \frac{\sin^2(\theta - \alpha) + \sin^2\theta + \sin^2(\theta + \alpha) + k}{\cos^2(\theta - \alpha) + \cos^2\theta + \cos^2(\theta + \alpha) + k} \equiv m$, for all values of θ and α . Find the values of k and m.

3. Let $a_1 = \cos x$ with x acute, and $b_1 = 1$. Given that

$$a_{n+1} = \frac{1}{2}(a_n + b_n), \qquad b_{n+1} = \sqrt{a_{n+1}b_n},$$

find a_2 and b_2 and show that

$$a_3 = \cos \frac{x}{2} \cos^2 \frac{x}{4}$$
, and $b_3 = \cos \frac{x}{2} \cos \frac{x}{4}$.

Determine general expressions for a_n and b_n for $n \geq 2$.

4. Prove the identity

$$\cos x \cos y \sin^2 \frac{x+y}{2} - \sin x \sin y \cos^2 \frac{x+y}{2} = \frac{1}{2} \cos(x+y) (1 - \cos(x-y)).$$

5. The points P, Q, R and S have coordinates $(a\cos p, b\sin p)$, $(a\cos q, b\sin q)$, $(a\cos r, b\sin r)$, and $(a\cos s, b\sin s)$ respectively, where $0 \le p < q < r < s < 2\pi$, and a and b are positive. Given that neither of the lines PQ and RS is vertical, show that these lines are parallel if and only if

$$r + s - p - q = 2\pi.$$